TY - JOUR
T1 - On the use of 3,5-O-benzylidene and 3,5-O-(di-tert-butylsilylene)-2-O-benzylarabinothiofuranosides and their sulfoxides as glycosyl donors for the synthesis of β-arabinofuranosides
T2 - importance of the activation method
AU - Crich, David
AU - Pedersen, Christian Marcus
AU - Bowers, Albert A.
AU - Wink, Donald J.
PY - 2007
Y1 - 2007
N2 - A 2-O-benzyl-3,5-O-benzylidene-alpha-d-thioarabinofuranoside was obtained by reaction of the corresponding diol with alpha,alpha-dibromotoluene under basic conditions. On activation with 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride in dichloromethane at -55 degrees C, reaction with glycosyl acceptors affords anomeric mixtures with little or no selectivity. The analogous 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-d-thioarabinofuranoside also showed no significant selectivity under the 1-benzenesulfinyl piperidine or diphenyl sulfoxide conditions. With N-iodosuccinimide and silver trifluoromethanesulfonate the silylene acetal showed moderate to high beta-selectivity, independent of the configuration of the starting thioglycoside. High beta-selectivity was also obtained with a 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-arabinofuranosyl sulfoxide donor on activation with trifluoromethanesulfonic anhydride. The high beta-selectivities obtained by the N-iodosuccinimide/silver trifluoromethanesulfonate and sulfoxide methods are consistent with a common intermediate, most likely to be the oxacarbenium ion. The poor selectivity observed on activation of the thioglycosides with the 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride methods appears to be the result of the formation of a complex mixture of glycosyl donors, as determined by low-temperature NMR work.
AB - A 2-O-benzyl-3,5-O-benzylidene-alpha-d-thioarabinofuranoside was obtained by reaction of the corresponding diol with alpha,alpha-dibromotoluene under basic conditions. On activation with 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride in dichloromethane at -55 degrees C, reaction with glycosyl acceptors affords anomeric mixtures with little or no selectivity. The analogous 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-d-thioarabinofuranoside also showed no significant selectivity under the 1-benzenesulfinyl piperidine or diphenyl sulfoxide conditions. With N-iodosuccinimide and silver trifluoromethanesulfonate the silylene acetal showed moderate to high beta-selectivity, independent of the configuration of the starting thioglycoside. High beta-selectivity was also obtained with a 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-arabinofuranosyl sulfoxide donor on activation with trifluoromethanesulfonic anhydride. The high beta-selectivities obtained by the N-iodosuccinimide/silver trifluoromethanesulfonate and sulfoxide methods are consistent with a common intermediate, most likely to be the oxacarbenium ion. The poor selectivity observed on activation of the thioglycosides with the 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride methods appears to be the result of the formation of a complex mixture of glycosyl donors, as determined by low-temperature NMR work.
KW - Arabinose
KW - Benzylidene Compounds
KW - Carbohydrate Sequence
KW - Crystallography, X-Ray
KW - Glycosylation
KW - Indicators and Reagents
KW - Magnetic Resonance Spectroscopy
KW - Models, Molecular
KW - Molecular Conformation
KW - Sulfoxides
U2 - 10.1021/jo061440x
DO - 10.1021/jo061440x
M3 - Journal article
C2 - 17286432
SN - 0022-3263
VL - 72
SP - 1553
EP - 1565
JO - The Journal of Organic Chemistry
JF - The Journal of Organic Chemistry
IS - 5
ER -