Abstract
We consider Edelstein's dynamical system of three reversible reactions in R3 and show that it is not Liouville (hence also not Darboux) integrable. To do so, we characterize its polynomial first integrals, Darboux polynomials and exponential factors.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Chaos, Solitons and Fractals |
Vol/bind | 108 |
Sider (fra-til) | 129-135 |
Antal sider | 7 |
ISSN | 0960-0779 |
DOI | |
Status | Udgivet - 1 mar. 2018 |