@article{4d749360abec11ddb5e9000ea68e967b,
title = "On the efficacy of linear system analysis of renal autoregulation in rats.",
abstract = "In order to assess the linearity of the mechanisms subserving renal blood flow autoregulation, broad-band arterial pressure fluctuations at three different power levels were induced experimentally and the resulting renal blood flow responses were recorded. Linear system analysis methods were applied in both the time and frequency domain. In the frequency domain, spectral estimates employing FFT, autoregressive moving average (ARMA) and moving average (MA) methods were used; only the MA model showed two vascular control mechanisms active at 0.02-0.05 Hz and 0.1-0.18 Hz consistent with previous experimental findings [Holstein-Rathlou et al., Amer. J. Physiol., vol. 258, 1990.]. In the time domain, impulse response functions obtained from the MA model indicated likewise the presence of these two vascular control mechanisms, but the ARMA model failed to show any vascular control mechanism at 0.02-0.05 Hz. The residuals (i.e., model prediction errors) of the MA model were smaller than the ARMA model for all levels of arterial pressure forcings. The observed low coherence values and the significant model residuals in the 0.02-0.05 Hz frequency range suggest that the tubuloglomerular feedback (TGF) active in this frequency range is a nonlinear vascular control mechanism. In addition, experimental results suggest that the operation of the TGF mechanism is more evident at low/moderate pressure fluctuations and becomes overwhelmed when the arterial pressure forcing is too high.",
author = "Chon, {K H} and Chen, {Y M} and Holstein-Rathlou, {N H} and Marsh, {D J} and Marmarelis, {V Z}",
note = "Keywords: Animals; Bias (Epidemiology); Blood Flow Velocity; Blood Pressure; Evaluation Studies as Topic; Feedback; Fourier Analysis; Hemodynamics; Homeostasis; Kidney Glomerulus; Kidney Tubules; Linear Models; Male; Models, Cardiovascular; Predictive Value of Tests; Rats; Rats, Sprague-Dawley; Renal Circulation",
year = "1993",
doi = "10.1109/10.204766",
language = "English",
volume = "40",
pages = "8--20",
journal = "IEEE Transactions on Biomedical Engineering",
issn = "0018-9294",
publisher = "Institute of Electrical and Electronics Engineers",
number = "1",
}