On confluence and residuals in Cauchy convergent transfinite rewriting

Jakob Grue Simonsen*

*Corresponding author af dette arbejde
11 Citationer (Scopus)

Abstract

We show that non-collapsing orthogonal term rewriting systems do not have the transfinite Church-Rosser property in the setting of Cauchy convergence. In addition, we show that for (a transfinite version of) the Parallel Moves Lemma to hold, any definition of residual for Cauchy convergent rewriting must either part with a number of fundamental properties enjoyed by rewriting systems in the finitary and strongly convergent settings, or fail to hold for very simple rewriting systems.

OriginalsprogEngelsk
TidsskriftInformation Processing Letters
Vol/bind91
Udgave nummer3
Sider (fra-til)141-146
Antal sider6
ISSN0020-0190
DOI
StatusUdgivet - 16 aug. 2004

Fingeraftryk

Dyk ned i forskningsemnerne om 'On confluence and residuals in Cauchy convergent transfinite rewriting'. Sammen danner de et unikt fingeraftryk.

Citationsformater