On certain finiteness questions in the arithmetic of modular forms

Ian Kiming, Nadim Rustom, Gabor Wiese

5 Citationer (Scopus)

Abstract

We investigate certain finiteness questions that arise naturally when studying approximations modulo prime powers of $p$-adic Galois representations coming from modular forms. We link these finiteness statements with a question by K. Buzzard concerning $p$-adic coefficient fields of Hecke eigenforms. Specifically, we conjecture that, for fixed $N$, $m$, and prime $p$ with $p$ not dividing $N$, there is only a finite number of reductions modulo $p^m$ of normalized eigenforms on $\Gamma -1(N)$. We consider various variants of our basic finiteness conjecture, prove a weak version of it, and give some numerical evidence.

OriginalsprogEngelsk
TidsskriftJournal of the London Mathematical Society
Vol/bind94
Udgave nummer2
Sider (fra-til)479-502
ISSN0024-6107
DOI
StatusUdgivet - 1 okt. 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'On certain finiteness questions in the arithmetic of modular forms'. Sammen danner de et unikt fingeraftryk.

Citationsformater