Abstract
We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d -core partition c d (λ) and the other consisting of modified bar lengths in its d -quotient partition. In particular, we obtain that the multiset of bar lengths in c d (λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of n. The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors.
Bidragets oversatte titel | Om længder af bars i partitioner |
---|---|
Originalsprog | Engelsk |
Tidsskrift | Proceedings of the Edinburgh Mathematical Society |
Vol/bind | 56 |
Udgave nummer | 2 |
Sider (fra-til) | 535-550 |
Antal sider | 16 |
ISSN | 0013-0915 |
DOI | |
Status | Udgivet - jun. 2013 |