On bar lengths in partitions

Bidragets oversatte titel: Om længder af bars i partitioner

Jean-Baptiste Bernard Gramain, Jørn Børling Olsson

Abstract

We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d -core partition c d (λ) and the other consisting of modified bar lengths in its d -quotient partition. In particular, we obtain that the multiset of bar lengths in c d (λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of n. The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors.

Bidragets oversatte titelOm længder af bars i partitioner
OriginalsprogEngelsk
TidsskriftProceedings of the Edinburgh Mathematical Society
Vol/bind56
Udgave nummer2
Sider (fra-til)535-550
Antal sider16
ISSN0013-0915
DOI
StatusUdgivet - jun. 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Om længder af bars i partitioner'. Sammen danner de et unikt fingeraftryk.

Citationsformater