On an Iteration Leading to a q-Analogue of the Digamma Function

Christian Berg, Helle Bjerg Petersen

1 Citationer (Scopus)

Abstract

We show that the q-Digamma function ψq for 0 < q < 1 appears in an
iteration studied by Berg and Durán. This is connected with the determination of the probability measure νq on the unit interval with moments 1/n+1 k=1(1 − q)/(1 −
qk), which are q-analogues of the reciprocals of the harmonic numbers. The Mellin transform of the measure νq can be expressed in terms of the q-Digamma function.
It is shown that νq has a continuous density on ]0, 1], which is piecewise C∞ with kinks at the powers of q. Furthermore, (1 − q)e−xνq (e−x ) is a standard p-function from the theory of regenerative phenomen.
OriginalsprogEngelsk
TidsskriftJournal of Fourier Analysis and Applications
Vol/bind19
Udgave nummer4
Sider (fra-til)762-776
ISSN1069-5869
DOI
StatusUdgivet - aug. 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'On an Iteration Leading to a q-Analogue of the Digamma Function'. Sammen danner de et unikt fingeraftryk.

Citationsformater