Abstract
Let k be an infinite perfect field of positive characteristic such that strong resolution of singularities holds over k. We prove that a localization of a d-dimensional commutative k-algebra R of finite type is K d+1-regular if and only if it is regular. This partially affirms a conjecture of Vorst.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Mathematische Zeitschrift |
Sider (fra-til) | 445-452 |
ISSN | 0025-5874 |
DOI | |
Status | Udgivet - feb. 2012 |
Udgivet eksternt | Ja |