Abstract
This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly specific inhibitor of uPA.
With the aim of creating better inhibitors based on the upain-2 scaffold, the following three strategies were explored: First, it was attempted to predefine the structure of upain-2 in solution by incorporating turn-inducing sequences and peptidomimetics. Additionally, the disulfide bridge was replaced with amide bonds of various lengths. The novel peptides did not retain their inhibitory activity, but formed the basis for another strategy. Second, bicyclic peptides were obtained by creating head-to-tail cyclized peptides that were made bicyclic by the addition of a covalent bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been increased. Finally, the effect of multivalent display of upain-2 was investigated. Several dimers of upain-2 were made and the attachment of upain-2 via the Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) onto an alkyne functionalized carbohydrate scaffold was investigated.
Besides the synthesis of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling reagent COMU on coupling yield has been investigated. The results have been accepted for publication.
With the aim of creating better inhibitors based on the upain-2 scaffold, the following three strategies were explored: First, it was attempted to predefine the structure of upain-2 in solution by incorporating turn-inducing sequences and peptidomimetics. Additionally, the disulfide bridge was replaced with amide bonds of various lengths. The novel peptides did not retain their inhibitory activity, but formed the basis for another strategy. Second, bicyclic peptides were obtained by creating head-to-tail cyclized peptides that were made bicyclic by the addition of a covalent bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been increased. Finally, the effect of multivalent display of upain-2 was investigated. Several dimers of upain-2 were made and the attachment of upain-2 via the Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) onto an alkyne functionalized carbohydrate scaffold was investigated.
Besides the synthesis of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling reagent COMU on coupling yield has been investigated. The results have been accepted for publication.
Originalsprog | Engelsk |
---|
Forlag | Department of Chemistry, Faculty of Science, University of Copenhagen |
---|---|
Antal sider | 157 |
Status | Udgivet - 2012 |