Non-empty Bins with Simple Tabulation Hashing

Abstract

We consider the hashing of a set X ⊆ U with |X| = m using a simple tabulation hash function h : U → [n] = {0,n − 1} and analyse the number of non-empty bins, that is, the size of h(X). We show that the expected size of h(X) matches that with fully random hashing to within low-order terms. We also provide concentration bounds. The number of non-empty bins is a fundamental measure in the balls and bins paradigm, and it is critical in applications such as Bloom filters and Filter hashing. For example, normally Bloom filters are proportioned for a desired low false-positive probability assuming fully random hashing. Our results imply that if we implement the hashing with simple tabulation, we obtain the same low false-positive probability for any possible input.

OriginalsprogEngelsk
TitelProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
RedaktørerTimothy M. Chan
ForlagSociety for Industrial and Applied Mathematics
Publikationsdato2 jan. 2019
Sider2498-2512
ISBN (Elektronisk)978-1-61197-548-2
DOI
StatusUdgivet - 2 jan. 2019
Begivenhed30th Annual ACM-SIAM Symposium on Discrete Algorithms
: SODA19
- San Diego, USA
Varighed: 6 jan. 20199 jan. 2019

Konference

Konference30th Annual ACM-SIAM Symposium on Discrete Algorithms
Land/OmrådeUSA
BySan Diego
Periode06/01/201909/01/2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Non-empty Bins with Simple Tabulation Hashing'. Sammen danner de et unikt fingeraftryk.

Citationsformater