TY - JOUR
T1 - Nitrogenase expression in estuarine bacterioplankton influenced by organic carbon and availability of oxygen
AU - Severin, Ina
AU - Bentzon-Tilia, Mikkel
AU - Moisander, Pia H.
AU - Riemann, Lasse
PY - 2015/7
Y1 - 2015/7
N2 - The genetic capacity to fix gaseous nitrogen (N) is distributed among diverse diazotrophs belonging to the Bacteria and Archaea. However, only a subset of the putative diazotrophs present actively fix N at any given time in the environment. We experimentally tested whether the availability of carbon and inhibition by oxygen constrain N fixation by diazotrophs in coastal seawater. The goal was to test whether by alleviating these constraints an increased overlap between nitrogenase (nifH)-gene-carrying and -expressing organisms could be achieved. We incubated water from a eutrophic but N-limited fjord in Denmark under high-carbon/low-oxygen conditions and determined bacterial growth and production, diazotrophic community composition (Illumina nifH amplicon sequencing), and nifH gene abundance and expression [quantitative PCR (qPCR) and quantitative reverse transcriptase PCR (qRT-PCR)]. Bacterial abundances and production increased under high-carbon/low-oxygen conditions as did the similarity between present and active diazotrophic communities. This was caused by the loss of specific abundant yet non-active gammaproteobacterial phylotypes and increased expression by others. The prominent active gamma- and epsilonproteobacterial diazotrophs did not, however, respond to these conditions in a uniform way, highlighting the difficulty to assess how a change in environmental conditions may affect a diverse indigenous diazotrophic community.
AB - The genetic capacity to fix gaseous nitrogen (N) is distributed among diverse diazotrophs belonging to the Bacteria and Archaea. However, only a subset of the putative diazotrophs present actively fix N at any given time in the environment. We experimentally tested whether the availability of carbon and inhibition by oxygen constrain N fixation by diazotrophs in coastal seawater. The goal was to test whether by alleviating these constraints an increased overlap between nitrogenase (nifH)-gene-carrying and -expressing organisms could be achieved. We incubated water from a eutrophic but N-limited fjord in Denmark under high-carbon/low-oxygen conditions and determined bacterial growth and production, diazotrophic community composition (Illumina nifH amplicon sequencing), and nifH gene abundance and expression [quantitative PCR (qPCR) and quantitative reverse transcriptase PCR (qRT-PCR)]. Bacterial abundances and production increased under high-carbon/low-oxygen conditions as did the similarity between present and active diazotrophic communities. This was caused by the loss of specific abundant yet non-active gammaproteobacterial phylotypes and increased expression by others. The prominent active gamma- and epsilonproteobacterial diazotrophs did not, however, respond to these conditions in a uniform way, highlighting the difficulty to assess how a change in environmental conditions may affect a diverse indigenous diazotrophic community.
U2 - 10.1093/femsle/fnv105
DO - 10.1093/femsle/fnv105
M3 - Journal article
SN - 0378-1097
VL - 362
SP - 1
EP - 10
JO - F E M S Microbiology Letters
JF - F E M S Microbiology Letters
IS - 14
M1 - fnv105
ER -