Nearest neighbour regression outperforms model-based prediction of specific star formation rate

Kristoffer Stensbo-Smidt, Christian Igel, Andrew Wasmuth Zirm, Kim Steenstrup Pedersen

10 Citationer (Scopus)

Abstract

Data in astronomy is rapidly growing with upcoming surveys producing 30 TB of images per night. Highly informative spectra are too expensive to measure for each detected object, hence ways of reliably estimating physical properties from images alone are paramount. The objective of this work is to test whether a 'big data ready' k-nearest neighbour regression can successfully estimate the specific star formation rate (sSFR) from colours of low-redshift galaxies. The nearest neighbour algorithm achieves a root mean square error (RMSE) of 0.30, outperforming the state-of-the-art astronomical model achieving a RMSE of 0.36.

OriginalsprogEngelsk
Titel2013 IEEE International Conference on Big Data
Antal sider4
ForlagIEEE
Publikationsdato2013
Sider141-144
ISBN (Elektronisk)978-1-4799-1293-3
DOI
StatusUdgivet - 2013
BegivenhedIEEE BigData 2013 - Hyatt Regency Santa Clara, CA, USA
Varighed: 6 okt. 20139 okt. 2013

Konference

KonferenceIEEE BigData 2013
Land/OmrådeUSA
ByHyatt Regency Santa Clara, CA
Periode06/10/201309/10/2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Nearest neighbour regression outperforms model-based prediction of specific star formation rate'. Sammen danner de et unikt fingeraftryk.

Citationsformater