Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis

Elaheh Ekhtiari Bidhendi, Johan Bergh, Per Zetterström, Karin Forsberg, Bente Pakkenberg, Peter M. Andersen, Stefan L. Marklund*, Thomas Brännström

*Corresponding author af dette arbejde
19 Citationer (Scopus)
40 Downloads (Pure)

Abstract

Motor neurons containing aggregates of superoxide dismutase 1 (SOD1) are hallmarks of amyotrophic lateral sclerosis (ALS) caused by mutations in the gene encoding SOD1. We have previously reported that two strains of mutant human (h) SOD1 aggregates (denoted A and B) can arise in hSOD1-transgenic models for ALS and that inoculation of such aggregates into the lumbar spinal cord of mice results in rostrally spreading, templated hSOD1 aggregation and premature fatal ALS-like disease. Here, we explored whether mutant hSOD1 aggregates with prion-like properties also exist in human ALS. Aggregate seeds were prepared from spinal cords from an ALS patient carrying the hSOD1 G127Gfs*7 truncation mutation and from mice transgenic for the same mutation. To separate from mono-, di- or any oligomeric hSOD1 species, the seed preparation protocol included ultracentrifugation through a density cushion. The core structure of hSOD1 G127Gfs*7 aggregates present in mice was strain A-like. Inoculation of the patient- or mouse-derived seeds into lumbar spinal cord of adult hSOD1-expressing mice induced strain A aggregation propagating along the neuraxis and premature fatal ALS-like disease (p < 0.0001). Inoculation of human or murine control seeds had no effect. The potencies of the ALS patient-derived seed preparations were high and disease was initiated in the transgenic mice by levels of hSOD1 G127Gfs*7 aggregates much lower than those found in the motor system of patients carrying the mutation. The results suggest that prion-like growth and spread of hSOD1 aggregation could be the primary pathogenic mechanism, not only in hSOD1 transgenic rodent models, but also in human ALS.

OriginalsprogEngelsk
TidsskriftActa Neuropathologica
Vol/bind136
Udgave nummer6
Sider (fra-til)939-953
Antal sider15
ISSN0001-6322
DOI
StatusUdgivet - 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis'. Sammen danner de et unikt fingeraftryk.

Citationsformater