Abstract
Let G be a real semi-simple Lie group and H a closed subgroup which admits an open orbit on the flag manifold of a minimal parabolic subgroup. Let V be a Harish-Chandra module. A uniform finite bound is given for the dimension of the space of H-fixed distribution vectors for V, and a related subrepresentation theorem is derived.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Transactions of the American Mathematical Society |
Vol/bind | 368 |
Udgave nummer | 4 |
Sider (fra-til) | 2749–2762 |
ISSN | 0002-9947 |
DOI | |
Status | Udgivet - apr. 2016 |