Multileaving for online evaluation of rankers

Brian Brost*

*Corresponding author af dette arbejde

Abstract

In online learning to rank we are faced with a tradeoff between exploring new, potentially superior rankers, and exploiting our preexisting knowledge of what rankers have performed well in the past. Multileaving methods offer an attractive approach to this problem since they can efficiently use online feedback to simultaneously evaluate a potentially arbitrary number of rankers. In this talk we discuss some of the main challenges in multileaving, and discuss promising areas for future research.

OriginalsprogEngelsk
TitelProceedings of the 1st International Workshop on LEARning Next gEneration Rankers co-located with the 3rd ACM International Conference on the Theory of Information Retrieval (ICTIR 2017)
RedaktørerNicola Ferro, Claudio Lucchese, Maria Maistro, Raffaele Perego
Antal sider2
ForlagCEUR-WS.org
Publikationsdato2017
StatusUdgivet - 2017
Begivenhed1st International Workshop on LEARning Next gEneration Rankers - Amsterdam, Holland
Varighed: 1 okt. 20171 okt. 2017
Konferencens nummer: 1

Workshop

Workshop1st International Workshop on LEARning Next gEneration Rankers
Nummer1
Land/OmrådeHolland
ByAmsterdam
Periode01/10/201701/10/2017
NavnCEUR Workshop Proceedings
Vol/bind2007
ISSN1613-0073

Fingeraftryk

Dyk ned i forskningsemnerne om 'Multileaving for online evaluation of rankers'. Sammen danner de et unikt fingeraftryk.

Citationsformater