TY - JOUR
T1 - Multifocal visual evoked potentials in optic neuritis and multiple sclerosis
T2 - A review
AU - Pihl-Jensen, Gorm
AU - Schmidt, Mathias Falck
AU - Frederiksen, Jette Lautrup
PY - 2017/7
Y1 - 2017/7
N2 - Multifocal visual evoked potential (mf-VEP) represents a new approach to the classical full field (ff-)VEP with separate responses from up to 60 sectors of the visual field. A thorough literature survey of the use of mf-VEP in optic neuritis (ON) and multiple sclerosis (MS) is presented (38 published studies were retrieved). Mf-VEP provides direct topographical information of specific lesions and facilitates investigations on structural-functional correlations thus providing new methods for exploring the interplay between demyelination, atrophy and remyelination in MS. Good correlation was shown between mf-VEP and OCT, ff-VEP, MRI (MTR, DTI), 30-2 standard automated perimetry and low-contrast-visual acuity. All but one study showed superior sensitivity and specificity compared to ff-VEP, especially with regards to small, peripheral lesions or lesions of the upper visual field. Mf-VEP has shown superior sensitivity and specificity than established methods in diagnosing optic nerve lesions and tracking functional recovery following lesions. Abnormal mf-VEP responses in the fellow, non-ON afflicted eye may predict MS risk in ON patients. No standardization currently exists and no direct comparisons in ON and MS between at least 5 different commercially available mf-VEP systems have so far been published. Despite these limitations, mf-VEP is a promising new tool of diagnostic and prognostic value of mf-VEP in ON and MS.
AB - Multifocal visual evoked potential (mf-VEP) represents a new approach to the classical full field (ff-)VEP with separate responses from up to 60 sectors of the visual field. A thorough literature survey of the use of mf-VEP in optic neuritis (ON) and multiple sclerosis (MS) is presented (38 published studies were retrieved). Mf-VEP provides direct topographical information of specific lesions and facilitates investigations on structural-functional correlations thus providing new methods for exploring the interplay between demyelination, atrophy and remyelination in MS. Good correlation was shown between mf-VEP and OCT, ff-VEP, MRI (MTR, DTI), 30-2 standard automated perimetry and low-contrast-visual acuity. All but one study showed superior sensitivity and specificity compared to ff-VEP, especially with regards to small, peripheral lesions or lesions of the upper visual field. Mf-VEP has shown superior sensitivity and specificity than established methods in diagnosing optic nerve lesions and tracking functional recovery following lesions. Abnormal mf-VEP responses in the fellow, non-ON afflicted eye may predict MS risk in ON patients. No standardization currently exists and no direct comparisons in ON and MS between at least 5 different commercially available mf-VEP systems have so far been published. Despite these limitations, mf-VEP is a promising new tool of diagnostic and prognostic value of mf-VEP in ON and MS.
KW - Clinical neurophysiology
KW - Multifocal visual evoked potentials
KW - Multiple sclerosis
KW - Optic neuritis
U2 - 10.1016/j.clinph.2017.03.047
DO - 10.1016/j.clinph.2017.03.047
M3 - Review
C2 - 28531809
AN - SCOPUS:85019868379
SN - 1388-2457
VL - 128
SP - 1234
EP - 1245
JO - Clinical Neurophysiology
JF - Clinical Neurophysiology
IS - 7
ER -