TY - JOUR
T1 - Molecular realization of a quantum NAND tree
AU - Jensen, Phillip W. K.
AU - Jin, Chengjun
AU - Dallaire-Demers, Pierre-Luc
AU - Aspuru-Guzik, Alán
AU - Solomon, Gemma C.
PY - 2019/1
Y1 - 2019/1
N2 - The negative-AND (NAND) gate is universal for classical computation making it an important target for development. A seminal quantum computing algorithm by Farhi, Goldstone and Gutmann has demonstrated its realization by means of quantum scattering yielding a quantum algorithm that evaluates the output faster than any classical algorithm. Here, we derive the NAND outputs analytically from scattering theory using a tight-binding (TB) model and show the restrictions on the TB parameters in order to still maintain the NAND gate function. We map the quantum NAND tree onto a conjugated molecular system, and compare the NAND output with non-equilibrium Green's function transport calculations using density functional theory and TB Hamiltonians for the electronic structure. Further, we extend our molecular platform to show other classical gates that can be realized for quantum computing by scattering on graphs.
AB - The negative-AND (NAND) gate is universal for classical computation making it an important target for development. A seminal quantum computing algorithm by Farhi, Goldstone and Gutmann has demonstrated its realization by means of quantum scattering yielding a quantum algorithm that evaluates the output faster than any classical algorithm. Here, we derive the NAND outputs analytically from scattering theory using a tight-binding (TB) model and show the restrictions on the TB parameters in order to still maintain the NAND gate function. We map the quantum NAND tree onto a conjugated molecular system, and compare the NAND output with non-equilibrium Green's function transport calculations using density functional theory and TB Hamiltonians for the electronic structure. Further, we extend our molecular platform to show other classical gates that can be realized for quantum computing by scattering on graphs.
KW - unimolecular electronics
KW - transmission logic gates
KW - quantum computing
KW - quantum scattering
KW - non-equilibrium Green's function
U2 - 10.1088/2058-9565/aaf24b
DO - 10.1088/2058-9565/aaf24b
M3 - Journal article
SN - 2058-9565
VL - 4
JO - Quantum Science and Technology
JF - Quantum Science and Technology
IS - 1
M1 - 015013
ER -