TY - JOUR
T1 - Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster.
AU - Lenz, C
AU - Williamson, M
AU - Grimmelikhuijzen, C J
N1 - Keywords: Amino Acid Sequence; Animals; Base Sequence; Cloning, Molecular; DNA Primers; DNA, Complementary; Drosophila Proteins; Drosophila melanogaster; Genes, Insect; Insect Hormones; Insect Proteins; Molecular Sequence Data; Neuropeptides; Rats; Receptors, Cell Surface; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Sequence Homology, Amino Acid
PY - 2000
Y1 - 2000
N2 - We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as template, we subsequently cloned the cDNA of this receptor. The receptor cDNA codes for a protein that is strongly related to the first Drosophila receptor (60% amino acid sequence identity in the transmembrane region; 47% identity in the overall sequence) and that is, therefore, most likely to be a second Drosophila allatostatin receptor (named DAR-2). The DAR-2 gene has three introns and four exons. Two of these introns coincide with two introns in the first Drosophila receptor (DAR-1) gene, and have the same intron phasing, showing that the two receptor genes are clearly evolutionarily related. The DAR-2 gene is located at the right arm of the third chromosome, position 98 D-E. This is the first report on the existence of two different allatostatin receptors in an animal.
AB - We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as template, we subsequently cloned the cDNA of this receptor. The receptor cDNA codes for a protein that is strongly related to the first Drosophila receptor (60% amino acid sequence identity in the transmembrane region; 47% identity in the overall sequence) and that is, therefore, most likely to be a second Drosophila allatostatin receptor (named DAR-2). The DAR-2 gene has three introns and four exons. Two of these introns coincide with two introns in the first Drosophila receptor (DAR-1) gene, and have the same intron phasing, showing that the two receptor genes are clearly evolutionarily related. The DAR-2 gene is located at the right arm of the third chromosome, position 98 D-E. This is the first report on the existence of two different allatostatin receptors in an animal.
U2 - 10.1006/bbrc.2000.2964
DO - 10.1006/bbrc.2000.2964
M3 - Journal article
C2 - 10873647
SN - 0006-291X
VL - 273
SP - 571
EP - 577
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 2
ER -