Modular Acceleration: Tricky Cases of Functional High-performance Computing

3 Citationer (Scopus)

Abstract

This case study examines the data-parallel functional implementation of three algorithms: generation of quasi-random Sobol numbers, breadth-first search, and calibration of Heston market parameters via a least-squares procedure. We show that while all these problems permit elegant functional implementations, good performance depends on subtle issues that must be confronted in both the implementations of the algorithms themselves, as well as the compiler that is responsible for ultimately generating high-performance code. In particular, we demonstrate a modular technique for generating quasi-random Sobol numbers in an efficient manner, study the efficient implementation of an irregular graph algorithm without sacrificing parallelism, and argue for the utility of nested regular data parallelism in the context of nonlinear parameter calibration.

OriginalsprogEngelsk
TitelFHPC 2018 - Proceedings of the 7th ACM SIGPLAN International Workshop on Functional High-Performance Computing, co-located with ICFP 2018
RedaktørerMike Rainey, Kei Davis
Antal sider12
UdgivelsesstedNew York, NY, USA
ForlagAssociation for Computing Machinery
Publikationsdato2018
Sider10-21
ISBN (Trykt)978-1-4503-5813-2
ISBN (Elektronisk)9781450358132
DOI
StatusUdgivet - 2018
Begivenhed7th ACM SIGPLAN International Workshop on Functional High-Performance Computing - St. Louis, USA
Varighed: 29 sep. 201829 sep. 2018

Workshop

Workshop7th ACM SIGPLAN International Workshop on Functional High-Performance Computing
Land/OmrådeUSA
BySt. Louis
Periode29/09/201829/09/2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Modular Acceleration: Tricky Cases of Functional High-performance Computing'. Sammen danner de et unikt fingeraftryk.

Citationsformater