TY - JOUR
T1 - miRNA profiles in plasma from patients with sleep disorders reveal dysregulation of miRNAs in narcolepsy and other central hypersomnias
AU - Holm, Anja
AU - Bang-Berthelsen, Claus Heiner
AU - Knudsen, Stine
AU - Kornum, Birgitte R
AU - Modvig, Signe
AU - Jennum, Poul
AU - Gammeltoft, Steen
N1 - © 2014 Associated Professional Sleep Societies, LLC.
PY - 2014/9/1
Y1 - 2014/9/1
N2 - Study Objectives: MicroRNAs (miRNAs) have been implicated in the pathogenesis of human diseases including neurological disorders. The aim is to address the involvement of miRNAs in the pathophysiology of central hypersomnias including autoimmune narcolepsy with cataplexy and hypocretin deficiency (type 1 narcolepsy), narcolepsy without cataplexy (type 2 narcolepsy), and idiopathic hypersomnia. Design: We conducted high-throughput analysis of miRNA in plasma from three groups of patients - with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively - in comparison with healthy controls using quantitative real-time polymerase chain reaction (qPCR) panels. Setting: University hospital based sleep clinic and research laboratories. Patients: Twelve patients with type 1 narcolepsy, 12 patients with type 2 narcolepsy, 12 patients with idiopathic hypersomnia, and 12 healthy controls. Measurements and Results: By analyzing miRNA in plasma with qPCR we identified 50, 24, and 6 miRNAs that were different in patients with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively, compared with healthy controls. Twenty miRNA candidates who fulfilled the criteria of at least two-fold difference and p-value < 0.05 were selected to validate the miRNA changes in an independent cohort of patients. Four miRNAs differed significantly between type 1 narcolepsy patients and healthy controls. Levels of miR-30c, let-7f, and miR-26a were higher, whereas the level of miR-130a was lower in type 1 narcolepsy than healthy controls. The miRNA differences were not specific for type 1 narcolepsy, since the levels of the four miRNAs were also altered in patients with type 2 narcolepsy and idiopathic hypersomnia compared with healthy controls. Conclusion: The levels of four miRNAs differed in plasma from patients with type 1 narcolepsy, type 2 narcolepsy and idiopathic hypersomnia suggesting that alterations of miRNAs may be involved in the pathophysiology of central hypersomnias.
AB - Study Objectives: MicroRNAs (miRNAs) have been implicated in the pathogenesis of human diseases including neurological disorders. The aim is to address the involvement of miRNAs in the pathophysiology of central hypersomnias including autoimmune narcolepsy with cataplexy and hypocretin deficiency (type 1 narcolepsy), narcolepsy without cataplexy (type 2 narcolepsy), and idiopathic hypersomnia. Design: We conducted high-throughput analysis of miRNA in plasma from three groups of patients - with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively - in comparison with healthy controls using quantitative real-time polymerase chain reaction (qPCR) panels. Setting: University hospital based sleep clinic and research laboratories. Patients: Twelve patients with type 1 narcolepsy, 12 patients with type 2 narcolepsy, 12 patients with idiopathic hypersomnia, and 12 healthy controls. Measurements and Results: By analyzing miRNA in plasma with qPCR we identified 50, 24, and 6 miRNAs that were different in patients with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively, compared with healthy controls. Twenty miRNA candidates who fulfilled the criteria of at least two-fold difference and p-value < 0.05 were selected to validate the miRNA changes in an independent cohort of patients. Four miRNAs differed significantly between type 1 narcolepsy patients and healthy controls. Levels of miR-30c, let-7f, and miR-26a were higher, whereas the level of miR-130a was lower in type 1 narcolepsy than healthy controls. The miRNA differences were not specific for type 1 narcolepsy, since the levels of the four miRNAs were also altered in patients with type 2 narcolepsy and idiopathic hypersomnia compared with healthy controls. Conclusion: The levels of four miRNAs differed in plasma from patients with type 1 narcolepsy, type 2 narcolepsy and idiopathic hypersomnia suggesting that alterations of miRNAs may be involved in the pathophysiology of central hypersomnias.
KW - Adult
KW - Case-Control Studies
KW - Cataplexy
KW - Female
KW - Humans
KW - Hypersomnolence, Idiopathic
KW - Intracellular Signaling Peptides and Proteins
KW - Male
KW - MicroRNAs
KW - Narcolepsy
KW - Neuropeptides
KW - Real-Time Polymerase Chain Reaction
KW - Reproducibility of Results
U2 - 10.5665/sleep.4004
DO - 10.5665/sleep.4004
M3 - Journal article
C2 - 25142559
SN - 0161-8105
VL - 37
SP - 1525
EP - 1533
JO - Sleep
JF - Sleep
IS - 9
ER -