Minimum perimeter-sum partitions in the plane

Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, Ali D. Mehrabi

Abstract

Let P be a set of n points in the plane. We consider the problem of partitioning P into two subsets P1 and P2 such that the sum of the perimeters of CH(P1) and CH(P2) is minimized, where CH(Pi) denotes the convex hull of Pi. The problem was first studied by Mitchell and Wynters in 1991 who gave an O(n2) time algorithm. Despite considerable progress on related problems, no subquadratic time algorithm for this problem was found so far. We present an exact algorithm solving the problem in O(nlog 2n) time and a (1 + ε) -approximation algorithm running in O(n+ 1 / ε2· log 2(1 / ε)) time.

OriginalsprogEngelsk
TidsskriftDiscrete & Computational Geometry
ISSN0179-5376
DOI
StatusUdgivet - 1 mar. 2020
Begivenhed33rd International Symposium on Computational Geometry - Brisbane, Australien
Varighed: 4 jul. 20177 jul. 2017
Konferencens nummer: 33

Konference

Konference33rd International Symposium on Computational Geometry
Nummer33
Land/OmrådeAustralien
ByBrisbane
Periode04/07/201707/07/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Minimum perimeter-sum partitions in the plane'. Sammen danner de et unikt fingeraftryk.

Citationsformater