TY - JOUR
T1 - Microbial indicators for soil quality
AU - Schloter, Michael
AU - Nannipieri, Paolo
AU - Sørensen, Søren Johannes
AU - van Elsas, Jan Dirk
PY - 2018/1/1
Y1 - 2018/1/1
N2 - The living soil is instrumental to key life support functions (LSF) that safeguard life on Earth. The soil microbiome has a main role as a driver of these LSF. Current global developments, like anthropogenic threats to soil (e.g., via intensive agriculture) and climate change, pose a burden on soil functioning. Therefore, it is important to dispose of robust indicators that report on the nature of deleterious changes and thus soil quality. There has been a long debate on the best selection of biological indicators (bioindicators) that report on soil quality. Such indicators should ideally describe organisms with key functions in the system, or with key regulatory/connecting roles (so-called keystone species). However, in the light of the huge functional redundancy in most soil microbiomes, finding specific keystone markers is not a trivial task. The current rapid development of molecular (DNA-based) methods that facilitate deciphering microbiomes with respect to key functions will enable the development of improved criteria by which molecular information can be tuned to yield molecular markers of soil LSF. This review critically examines the current state-of-the-art in molecular marker development and recommends avenues to come to improved future marker systems.
AB - The living soil is instrumental to key life support functions (LSF) that safeguard life on Earth. The soil microbiome has a main role as a driver of these LSF. Current global developments, like anthropogenic threats to soil (e.g., via intensive agriculture) and climate change, pose a burden on soil functioning. Therefore, it is important to dispose of robust indicators that report on the nature of deleterious changes and thus soil quality. There has been a long debate on the best selection of biological indicators (bioindicators) that report on soil quality. Such indicators should ideally describe organisms with key functions in the system, or with key regulatory/connecting roles (so-called keystone species). However, in the light of the huge functional redundancy in most soil microbiomes, finding specific keystone markers is not a trivial task. The current rapid development of molecular (DNA-based) methods that facilitate deciphering microbiomes with respect to key functions will enable the development of improved criteria by which molecular information can be tuned to yield molecular markers of soil LSF. This review critically examines the current state-of-the-art in molecular marker development and recommends avenues to come to improved future marker systems.
U2 - 10.1007/s00374-017-1248-3
DO - 10.1007/s00374-017-1248-3
M3 - Journal article
SN - 0178-2762
VL - 54
SP - 1
EP - 10
JO - Biology and Fertility of Soils
JF - Biology and Fertility of Soils
IS - 1
ER -