TY - JOUR
T1 - Metallothionein (MT)-III
T2 - generation of polyclonal antibodies, comparison with MT-I+II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer's disease brains
AU - Carrasco, J
AU - Giralt, M
AU - Molinero, A
AU - Penkowa, M
AU - Moos, T
AU - Hidalgo, J
N1 - Keywords: Alzheimer Disease; Animals; Antibodies, Monoclonal; Astrocytes; Brain Injuries; Cross Reactions; Freezing; Humans; Male; Mice; Nerve Tissue Proteins; Protein Isoforms; Rabbits; Rats; Rats, Sprague-Dawley
PY - 1999
Y1 - 1999
N2 - Metallothionein-III is a low molecular weight, heavy-metal binding protein expressed mainly in the central nervous system. First identified as a growth inhibitory factor (GIF) of rat cortical neurons in vitro, it has subsequently been shown to be a member of the metallothionein (MT) gene family and renamed as MT-III. In this study we have raised polyclonal antibodies in rabbits against recombinant rat MT-III (rMT-III). The sera obtained reacted specifically against recombinant zinc-and cadmium-saturated rMT-III, and did not cross-react with native rat MT-I and MT-II purified from the liver of zinc injected rats. The specificity of the antibody was also demonstrated in immunocytochemical studies by the elimination of the immunostaining by preincubation of the antibody with brain (but not liver) extracts, and by the results obtained in MT-III null mice. The antibody was used to characterize the putative differences between the rat brain MT isoforms, namely MT-I+II and MT-III, in the freeze lesion model of brain damage, and for developing an ELISA for MT-III suitable for brain samples. In the normal rat brain, MT-III was mostly present primarily in astrocytes. However, lectin staining indicated that MT-III immunoreactivity was also present in microglia, monocytes and/or macrophages in the leptomeninges and lying adjacent to major vessels. In freeze lesioned rats, both MT-I+II and MT-III immunoreactivities increased in the ipsilateral cortex. The pattern of MT-III immunoreactivity significantly differed from that of MT-I+II, since the latter was evident in both the vicinity of the lesioned tissue and deeper cortical layers, whereas that of the former was located only in the deeper cortical layers. This suggests different roles for these MT isoforms, and indeed in a new bioassay measuring astrocyte migration in vitro, rMT-III promoted migration to a higher extent than MT-I+II. Thus, MT-III could not only affect neuronal sprouting as previously suggested, but also astrocyte function. Finally, MT-III protein levels of patients with Alzheimer's disease (AD) were, if anything, increased when compared with similarly aged control brains, which was in agreement with the significantly increased MT-III mRNA levels of AD brains.
AB - Metallothionein-III is a low molecular weight, heavy-metal binding protein expressed mainly in the central nervous system. First identified as a growth inhibitory factor (GIF) of rat cortical neurons in vitro, it has subsequently been shown to be a member of the metallothionein (MT) gene family and renamed as MT-III. In this study we have raised polyclonal antibodies in rabbits against recombinant rat MT-III (rMT-III). The sera obtained reacted specifically against recombinant zinc-and cadmium-saturated rMT-III, and did not cross-react with native rat MT-I and MT-II purified from the liver of zinc injected rats. The specificity of the antibody was also demonstrated in immunocytochemical studies by the elimination of the immunostaining by preincubation of the antibody with brain (but not liver) extracts, and by the results obtained in MT-III null mice. The antibody was used to characterize the putative differences between the rat brain MT isoforms, namely MT-I+II and MT-III, in the freeze lesion model of brain damage, and for developing an ELISA for MT-III suitable for brain samples. In the normal rat brain, MT-III was mostly present primarily in astrocytes. However, lectin staining indicated that MT-III immunoreactivity was also present in microglia, monocytes and/or macrophages in the leptomeninges and lying adjacent to major vessels. In freeze lesioned rats, both MT-I+II and MT-III immunoreactivities increased in the ipsilateral cortex. The pattern of MT-III immunoreactivity significantly differed from that of MT-I+II, since the latter was evident in both the vicinity of the lesioned tissue and deeper cortical layers, whereas that of the former was located only in the deeper cortical layers. This suggests different roles for these MT isoforms, and indeed in a new bioassay measuring astrocyte migration in vitro, rMT-III promoted migration to a higher extent than MT-I+II. Thus, MT-III could not only affect neuronal sprouting as previously suggested, but also astrocyte function. Finally, MT-III protein levels of patients with Alzheimer's disease (AD) were, if anything, increased when compared with similarly aged control brains, which was in agreement with the significantly increased MT-III mRNA levels of AD brains.
U2 - 10.1089/neu.1999.16.1115
DO - 10.1089/neu.1999.16.1115
M3 - Journal article
C2 - 10595827
SN - 0897-7151
VL - 16
SP - 1115
EP - 1129
JO - Journal of Neurotrauma
JF - Journal of Neurotrauma
IS - 11
ER -