TY - JOUR
T1 - Metal-ion dependent catalytic properties of Sulfolobus solfataricus class II α-mannosidase
AU - Nielsen, Jonas Willum
AU - Poulsen, Nina Rødtness
AU - Johnsson, Anna Margit Susanne
AU - Winther, Jakob R.
AU - Stipp, Susan Louise Svane
AU - Willemoës, Martin
PY - 2012/10/9
Y1 - 2012/10/9
N2 - The active site for the family GH38 class II α-mannosidase is constituted in part by a divalent metal ion, mostly Zn(2+), as revealed in the crystal structures of enzymes from both animal and bacterial sources. The metal ion coordinates to the bound substrate and side chains of conserved amino acid residues. Recently, evidence has accumulated that class II α-mannosidase is active in complex with a range of divalent metal ions. In the present work, with employment of the class II α-mannosidase, ManA, from the hyperthermophilic archaeon Sulfolobus solfataricus, we explored the influence of the divalent metal ion on the associated steady-state kinetic parameters, K(M) and k(cat), for various substrates. With p-nitrophenyl-α-d-mannoside as a substrate, the enzyme showed activity in the presence of Co(2+), Cd(2+), Mn(2+), and Zn(2+), whereas Ni(2+) and Cu(2+) were inhibitory and nonactivating. Co(2+) was the preferred metal ion, with a k(cat)/K(M) value of about 120 mM(-1) s(-1), 6 times higher than that with Cd(2+) and Zn(2+) and 10 times higher than that with Mn(2+). With α-1,2-, α-1,3-, α-1,4-, or α-1,6-mannobiose as a substrate, Co(2+) was the only metal ion promoting hydrolysis of all substrates; however, Mn(2+), Cd(2+), and Zn(2+) could substitute to a varying extent. A change in the divalent metal ion generally affected the K(M) for the hydrolysis of p-nitrophenyl-α-d-mannoside; however, changes in both k(cat) and K(M) for the hydrolysis of α-mannobioses were observed, along with changing preferences for the glycosidic linkage. Finally, it was found that the metal ion and substrate bind in that order via a steady-state, ordered, sequential mechanism.
AB - The active site for the family GH38 class II α-mannosidase is constituted in part by a divalent metal ion, mostly Zn(2+), as revealed in the crystal structures of enzymes from both animal and bacterial sources. The metal ion coordinates to the bound substrate and side chains of conserved amino acid residues. Recently, evidence has accumulated that class II α-mannosidase is active in complex with a range of divalent metal ions. In the present work, with employment of the class II α-mannosidase, ManA, from the hyperthermophilic archaeon Sulfolobus solfataricus, we explored the influence of the divalent metal ion on the associated steady-state kinetic parameters, K(M) and k(cat), for various substrates. With p-nitrophenyl-α-d-mannoside as a substrate, the enzyme showed activity in the presence of Co(2+), Cd(2+), Mn(2+), and Zn(2+), whereas Ni(2+) and Cu(2+) were inhibitory and nonactivating. Co(2+) was the preferred metal ion, with a k(cat)/K(M) value of about 120 mM(-1) s(-1), 6 times higher than that with Cd(2+) and Zn(2+) and 10 times higher than that with Mn(2+). With α-1,2-, α-1,3-, α-1,4-, or α-1,6-mannobiose as a substrate, Co(2+) was the only metal ion promoting hydrolysis of all substrates; however, Mn(2+), Cd(2+), and Zn(2+) could substitute to a varying extent. A change in the divalent metal ion generally affected the K(M) for the hydrolysis of p-nitrophenyl-α-d-mannoside; however, changes in both k(cat) and K(M) for the hydrolysis of α-mannobioses were observed, along with changing preferences for the glycosidic linkage. Finally, it was found that the metal ion and substrate bind in that order via a steady-state, ordered, sequential mechanism.
KW - Bacterial Proteins
KW - Catalytic Domain
KW - Gene Expression Regulation, Bacterial
KW - Gene Expression Regulation, Enzymologic
KW - Metals
KW - Models, Molecular
KW - Molecular Sequence Data
KW - Protein Conformation
KW - Substrate Specificity
KW - Sulfolobus solfataricus
KW - alpha-Mannosidase
U2 - 10.1021/bi301096a
DO - 10.1021/bi301096a
M3 - Journal article
C2 - 22989181
SN - 0006-2960
VL - 51
SP - 8039
EP - 8046
JO - Biochemistry
JF - Biochemistry
IS - 40
ER -