TY - JOUR
T1 - Mechanisms underlying epithelium-dependent relaxation in rat bronchioles
T2 - analogy to EDHF-type relaxation in rat pulmonary arteries
AU - Kroigaard, Christel
AU - Dalsgaard, Thomas
AU - Simonsen, Ulf
PY - 2010/4
Y1 - 2010/4
N2 - This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small (SKCa) and intermediate (IKCa)-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IKCa and SK Ca3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries, respectively. In 5-hydroxytryptamine (1 μM)-contracted bronchioles (828 ± 20 μm, n = 84) and U46619 (0.03 μM)-contracted arteries (720 ± 24 μm, n = 68), NS309 (0.001-10 μM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IKCa channels with charybdotoxin and in bronchioles also by blocking SKCa channels with apamin. Inhibition of cyclooxygenase, nitric oxide synthase, and cytochrome 2C isoenzymes, or blockade of large (BKCa)-conductance calcium-activated potassium channels with iberiotoxin, failed to reduce NS309 relaxation. In contrast to the pulmonary arteries, relaxations to a β2-adrenoceptor agonist, salbutamol, were reduced in bronchioles by removing the epithelium or blocking IKCa and/or SKCa channels. Extracellular K+ (2-20 mM) induced relaxation in both bronchioles and arteries. An inhibitor of Na+-K+-ATPase, ouabain, abolished relaxations to NS309, salbutamol, and K+. These results suggest that IKCa and SKCa3 channels are located in the epithelium of bronchioles and endothelium of pulmonary arteries. Analog to the endothelium-derived hyperpolarizing factor (EDHF)-type relaxation in pulmonary arteries, these channels may be involved in EpDHF-type relaxation of bronchioles caused by epithelial K+ efflux followed by activation of Na+-K+-ATPase in the underlying smooth muscle layer.
AB - This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small (SKCa) and intermediate (IKCa)-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IKCa and SK Ca3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries, respectively. In 5-hydroxytryptamine (1 μM)-contracted bronchioles (828 ± 20 μm, n = 84) and U46619 (0.03 μM)-contracted arteries (720 ± 24 μm, n = 68), NS309 (0.001-10 μM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IKCa channels with charybdotoxin and in bronchioles also by blocking SKCa channels with apamin. Inhibition of cyclooxygenase, nitric oxide synthase, and cytochrome 2C isoenzymes, or blockade of large (BKCa)-conductance calcium-activated potassium channels with iberiotoxin, failed to reduce NS309 relaxation. In contrast to the pulmonary arteries, relaxations to a β2-adrenoceptor agonist, salbutamol, were reduced in bronchioles by removing the epithelium or blocking IKCa and/or SKCa channels. Extracellular K+ (2-20 mM) induced relaxation in both bronchioles and arteries. An inhibitor of Na+-K+-ATPase, ouabain, abolished relaxations to NS309, salbutamol, and K+. These results suggest that IKCa and SKCa3 channels are located in the epithelium of bronchioles and endothelium of pulmonary arteries. Analog to the endothelium-derived hyperpolarizing factor (EDHF)-type relaxation in pulmonary arteries, these channels may be involved in EpDHF-type relaxation of bronchioles caused by epithelial K+ efflux followed by activation of Na+-K+-ATPase in the underlying smooth muscle layer.
KW - Albuterol
KW - Animals
KW - Aryl Hydrocarbon Hydroxylases
KW - Biological Factors
KW - Bronchioles
KW - Endothelium
KW - Enzyme Inhibitors
KW - Epithelium
KW - Fluorescent Antibody Technique
KW - In Vitro Techniques
KW - Indoles
KW - Ion Channel Gating
KW - Isoenzymes
KW - Male
KW - Nitric Oxide Synthase
KW - Oximes
KW - Potassium Channels, Calcium-Activated
KW - Protein Transport
KW - Pulmonary Artery
KW - Rats
KW - Rats, Wistar
KW - Sodium-Potassium-Exchanging ATPase
KW - Vasodilation
U2 - 10.1152/ajplung.00220.2009
DO - 10.1152/ajplung.00220.2009
M3 - Journal article
C2 - 20118301
SN - 1040-0605
VL - 298
SP - L531-42
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 4
ER -