Abstract
A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string is unbordered if it has no border. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the following: If we pick a string of length n from a fixed alphabet uniformly at random, then the expected length of the maximal unbordered factor is n − O(1). We prove that this conjecture is true by proving that the expected value is in fact n−Θ(σ−1), where σ is the size of the alphabet. We discuss some of the consequences of this theorem.
Originalsprog | Engelsk |
---|---|
Titel | String Processing and Information Retrieval : 23rd International Symposium, SPIRE 2016, Beppu, Japan, October 18-20, 2016, Proceedings |
Redaktører | Shunsuke Inenaga, Kunihiko Sadakane, Tetsuya Sakai |
Antal sider | 4 |
Forlag | Springer |
Publikationsdato | 2016 |
Sider | 93-96 |
ISBN (Trykt) | 978-3-319-46048-2 |
ISBN (Elektronisk) | 978-3-319-46049-9 |
DOI | |
Status | Udgivet - 2016 |
Begivenhed | 23rd International Symposium on String Processing and Information Retrieval - Beppu, Japan Varighed: 8 okt. 2016 → 20 okt. 2016 Konferencens nummer: 23 |
Konference
Konference | 23rd International Symposium on String Processing and Information Retrieval |
---|---|
Nummer | 23 |
Land/Område | Japan |
By | Beppu |
Periode | 08/10/2016 → 20/10/2016 |
Navn | Lecture notes in computer science |
---|---|
Vol/bind | 9954 |
ISSN | 0302-9743 |