Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry

Casper Steinmann Svendsen, Dmitri G. Fedorov, Jan Halborg Jensen

24 Citationer (Scopus)
635 Downloads (Pure)

Abstract

We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be 18.3±3.5 kcal mol-1 for MP2/cc-pVDZ and 19.3±3.6 for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively.

OriginalsprogEngelsk
Artikelnummere60602
TidsskriftPLOS ONE
Vol/bind8
Udgave nummer4
Antal sider11
ISSN1932-6203
DOI
StatusUdgivet - 12 apr. 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry'. Sammen danner de et unikt fingeraftryk.

Citationsformater