TY - JOUR
T1 - Low Lignin Mutants and Reduction of Lignin Content in Grasses for Increased Utilisation of Lignocellulose
AU - Christensen, Cecilie Skovlund Løgi
AU - Rasmussen, Søren Kjærsgaard
PY - 2019/5/21
Y1 - 2019/5/21
N2 - Biomass rich in lignocellulose from grasses is a major source for biofuel production and animal feed. However, the presence of lignin in cell walls limits its efficient utilisation such as in its bioconversion to biofuel. Reduction of the lignin content or alteration of its structure in crop plants have been pursued, either by regulating genes encoding enzymes in the lignin biosynthetic pathway using biotechnological techniques or by breeding naturally-occurring low lignin mutant lines. The aim of this review is to provide a summary of these studies, focusing on lignin (monolignol) biosynthesis and composition in grasses and, where possible, the impact on recalcitrance to bioconversion. An overview of transgenic crops of the grass family with regulated gene expression in lignin biosynthesis is presented, including the effect on lignin content and changes in the ratio of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units. Furthermore, a survey is provided of low-lignin mutants in grasses, including cereals in particular, summarising their origin and phenotypic traits together with genetics and the molecular function of the various genes identified.
AB - Biomass rich in lignocellulose from grasses is a major source for biofuel production and animal feed. However, the presence of lignin in cell walls limits its efficient utilisation such as in its bioconversion to biofuel. Reduction of the lignin content or alteration of its structure in crop plants have been pursued, either by regulating genes encoding enzymes in the lignin biosynthetic pathway using biotechnological techniques or by breeding naturally-occurring low lignin mutant lines. The aim of this review is to provide a summary of these studies, focusing on lignin (monolignol) biosynthesis and composition in grasses and, where possible, the impact on recalcitrance to bioconversion. An overview of transgenic crops of the grass family with regulated gene expression in lignin biosynthesis is presented, including the effect on lignin content and changes in the ratio of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units. Furthermore, a survey is provided of low-lignin mutants in grasses, including cereals in particular, summarising their origin and phenotypic traits together with genetics and the molecular function of the various genes identified.
U2 - 10.3390/agronomy9050256
DO - 10.3390/agronomy9050256
M3 - Review
SN - 2073-4395
VL - 9
SP - 1
EP - 21
JO - Agronomy
JF - Agronomy
IS - 5
M1 - 256
ER -