TY - JOUR
T1 - Low blood flow at onset of moderate intensity exercise does not limit muscle oxygen uptake
AU - Nyberg, Michael Permin
AU - Mortensen, Stefan Peter
AU - Saltin, Bengt
AU - Hellsten, Ylva
AU - Bangsbo, Jens
N1 - CURIS 2010 5200 021
PY - 2010/3
Y1 - 2010/3
N2 - The effect of low blood flow at onset of moderate-intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5-min one-legged knee-extensor exercise bout (24 ± 1 W, mean ± SD) without (Con) and with (double blockade; DB) arterial infusion of inhibitors of nitric oxide synthase (NG-monomethyl-L-arginine) and cyclooxygenase (indomethacin) to inhibit the synthesis of nitric oxide and prostanoids, respectively. Leg blood flow and leg oxygen delivery throughout exercise was 25-50% lower (P < 0.05) in DB compared with Con. Leg oxygen extraction (arteriovenous O2 difference) was higher (P < 0.05) in DB than in Con (5 s: 127 ± 3 vs. 56 ± 4 ml/l), and leg oxygen uptake was not different between Con and DB during exercise. The difference between leg oxygen delivery and leg oxygen uptake was smaller (P < 0.05) during exercise in DB than in Con (5 s: 59 ± 12 vs. 262 ± 39 ml/min). The present data demonstrate that muscle blood flow and oxygen delivery can be markedly reduced without affecting muscle oxygen uptake in the initial phase of moderate-intensity exercise, suggesting that blood flow does not limit muscle oxygen uptake at the onset of exercise. Additionally, prostanoids and/or nitric oxide appear to play important roles in elevating skeletal muscle blood flow in the initial phase of exercise.
AB - The effect of low blood flow at onset of moderate-intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5-min one-legged knee-extensor exercise bout (24 ± 1 W, mean ± SD) without (Con) and with (double blockade; DB) arterial infusion of inhibitors of nitric oxide synthase (NG-monomethyl-L-arginine) and cyclooxygenase (indomethacin) to inhibit the synthesis of nitric oxide and prostanoids, respectively. Leg blood flow and leg oxygen delivery throughout exercise was 25-50% lower (P < 0.05) in DB compared with Con. Leg oxygen extraction (arteriovenous O2 difference) was higher (P < 0.05) in DB than in Con (5 s: 127 ± 3 vs. 56 ± 4 ml/l), and leg oxygen uptake was not different between Con and DB during exercise. The difference between leg oxygen delivery and leg oxygen uptake was smaller (P < 0.05) during exercise in DB than in Con (5 s: 59 ± 12 vs. 262 ± 39 ml/min). The present data demonstrate that muscle blood flow and oxygen delivery can be markedly reduced without affecting muscle oxygen uptake in the initial phase of moderate-intensity exercise, suggesting that blood flow does not limit muscle oxygen uptake at the onset of exercise. Additionally, prostanoids and/or nitric oxide appear to play important roles in elevating skeletal muscle blood flow in the initial phase of exercise.
U2 - 10.1152/ajpregu.00730.2009
DO - 10.1152/ajpregu.00730.2009
M3 - Journal article
C2 - 20089709
SN - 0363-6119
VL - 298
SP - R843-R848
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 3
ER -