Lost in translation: Authorship attribution using frame semantics

Steffen Hedegaard*, Jakob Grue Simonsen

*Corresponding author af dette arbejde
19 Citationer (Scopus)

Abstract

We investigate authorship attribution using classifiers based on frame semantics. The purpose is to discover whether adding semantic information to lexical and syntactic methods for authorship attribution will improve them, specifically to address the difficult problem of authorship attribution of translated texts. Our results suggest (i) that frame-based classifiers are usable for author attribution of both translated and untranslated texts; (ii) that framebased classifiers generally perform worse than the baseline classifiers for untranslated texts, but (iii) perform as well as, or superior to the baseline classifiers on translated texts; (iv) that-contrary to current belief-naïve classifiers based on lexical markers may perform tolerably on translated texts if the combination of author and translator is present in the training set of a classifier.

OriginalsprogEngelsk
TitelACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies
Antal sider6
Publikationsdato1 dec. 2011
Sider65-70
ISBN (Trykt)9781932432886
StatusUdgivet - 1 dec. 2011
Begivenhed49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-HLT 2011 - Portland, OR, USA
Varighed: 19 jun. 201124 jun. 2011

Konference

Konference49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-HLT 2011
Land/OmrådeUSA
ByPortland, OR
Periode19/06/201124/06/2011
SponsorGoogle, Baidu, Microsoft Research, Pacific Northwest National Laboratory, Yahoo
NavnACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
Vol/bind2

Fingeraftryk

Dyk ned i forskningsemnerne om 'Lost in translation: Authorship attribution using frame semantics'. Sammen danner de et unikt fingeraftryk.

Citationsformater