TY - JOUR
T1 - Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-beta knock-out mice.
AU - Matheu, Victor
AU - Treschow, Alexandra
AU - Teige, Ingrid
AU - Navikas, Vaidrius
AU - Issazadeh-Navikas, Shohreh
N1 - Keywords: Adjuvants, Immunologic; Animals; CpG Islands; Cytokines; Disease Models, Animal; Female; Interferon-beta; Mice; Mice, Knockout; Oligodeoxyribonucleotides; Ovalbumin; Respiratory Hypersensitivity; Treatment Outcome
PY - 2005
Y1 - 2005
N2 - BACKGROUND: CpG oligodeoxynucleotides (CpG-ODN) are capable of inducing high amounts of type I IFNs with many immunomodulatory properties. Furthermore, type-I IFNs have been proposed to play a key role in mediating effects of CpG-ODN. The precise role of IFN-beta in the immunomodulatory effects of CpG-ODN is not known. OBJECTIVE: Here, we aimed to elucidate the role of IFN-beta in the anti-allergic effect of CpG motifs. METHODS: We assessed the immune response in OVA-primed/OVA-challenged IFN-beta knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment with synthetic CpG motifs. RESULTS: Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-beta-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-beta-/- mice. Other inflammatory cells, such as lymphocytes and macrophages were enhanced in airways by CpG treatment in IFN-beta-/- mice. The ratio of IFN-gamma/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-beta-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T-cell proliferation, Th1-cytokines such as IFN-gamma, IL-2 and also IL-12 were significantly lower in IFN-beta-/- mice. Surprisingly, we discovered that intranasal treatment of mice with CpG-ODN results in mild synovitis particularly in IFN-beta-/- mice. CONCLUSION: Our results indicate that induction of Th1 response by therapy with CpG-ODN is only slightly and partially dependent on IFN-beta, while IFN-beta is not an absolute requirement for suppression of airway eosinophilia and IgE. Furthermore, our finding of mild synovitis is a warning for possible negative effects of CpG-ODN vaccination.
AB - BACKGROUND: CpG oligodeoxynucleotides (CpG-ODN) are capable of inducing high amounts of type I IFNs with many immunomodulatory properties. Furthermore, type-I IFNs have been proposed to play a key role in mediating effects of CpG-ODN. The precise role of IFN-beta in the immunomodulatory effects of CpG-ODN is not known. OBJECTIVE: Here, we aimed to elucidate the role of IFN-beta in the anti-allergic effect of CpG motifs. METHODS: We assessed the immune response in OVA-primed/OVA-challenged IFN-beta knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment with synthetic CpG motifs. RESULTS: Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-beta-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-beta-/- mice. Other inflammatory cells, such as lymphocytes and macrophages were enhanced in airways by CpG treatment in IFN-beta-/- mice. The ratio of IFN-gamma/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-beta-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T-cell proliferation, Th1-cytokines such as IFN-gamma, IL-2 and also IL-12 were significantly lower in IFN-beta-/- mice. Surprisingly, we discovered that intranasal treatment of mice with CpG-ODN results in mild synovitis particularly in IFN-beta-/- mice. CONCLUSION: Our results indicate that induction of Th1 response by therapy with CpG-ODN is only slightly and partially dependent on IFN-beta, while IFN-beta is not an absolute requirement for suppression of airway eosinophilia and IgE. Furthermore, our finding of mild synovitis is a warning for possible negative effects of CpG-ODN vaccination.
U2 - 10.1186/1465-9921-6-25
DO - 10.1186/1465-9921-6-25
M3 - Journal article
C2 - 15748290
SN - 1465-993X
VL - 6
SP - 25
JO - Respiratory research
JF - Respiratory research
ER -