Linear latent variable models: the lava-package

Klaus Kähler Holst, Esben Budtz-Jørgensen

30 Citationer (Scopus)

Abstract

An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation interface covering a broad range of non-linear generalized structural equation models is described. The model and software are demonstrated in data of measurements of the serotonin transporter in the human brain.

OriginalsprogEngelsk
TidsskriftComputational Statistics
Vol/bind28
Udgave nummer4
Sider (fra-til)1385-1452
Antal sider68
ISSN0943-4062
DOI
StatusUdgivet - 1 aug. 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Linear latent variable models: the lava-package'. Sammen danner de et unikt fingeraftryk.

Citationsformater