Linear elimination in chemical reaction networks

Meritxell Sáez, Elisenda Feliu, Carsten Wiuf*

*Corresponding author af dette arbejde

Abstract

We consider dynamical systems arising in biochemistry and systems biology that model the evolution of the concentrations of biochemical species described by chemical reactions. These systems are typically confined to an invariant linear subspace of ℝn. The steady states of the system are solutions to a system of polynomial equations for which only non-negative solutions are of interest. Here we study the set of non-negative solutions and provide a method for simplification of this polynomial system by means of linear elimination of variables. We take a graphical approach. The interactions among the species are represented by an edge labelled graph. Subgraphs with only certain labels correspond to sets of species concentrations that can be eliminated from the steady state equations using linear algebra. To assess positivity of the eliminated variables in terms of the non-eliminated variables, a multigraph is introduced that encodes the connections between the eliminated species in the reactions. We give graphical conditions on the multigraph that ensure the eliminated variables are expressed as positive functions of the non-eliminated variables. We interpret these conditions in terms of the reaction network. The results are illustrated by examples.

OriginalsprogEngelsk
TitelRecent Advances in Differential Equations and Applications
RedaktørerJuan Luis García Guirao, José Alberto Murillo Hernández, Francisco Periago Esparza
Antal sider17
ForlagSpringer
Publikationsdato2019
Sider177-193
DOI
StatusUdgivet - 2019
Begivenhed25th Congress on Differential Equations and Applications / 15th Congress on Applied Mathematics - Cartagena, Spanien
Varighed: 26 jun. 201730 jun. 2017

Konference

Konference25th Congress on Differential Equations and Applications / 15th Congress on Applied Mathematics
Land/OmrådeSpanien
ByCartagena
Periode26/06/201730/06/2017
NavnSEMA SIMAI Springer Series
Vol/bind18
ISSN2199-3041

Fingeraftryk

Dyk ned i forskningsemnerne om 'Linear elimination in chemical reaction networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater