Light utilization efficiency in photosynthetic microbial mats

Mohammad A.A. Al-Naijar, Dirk de Beer, Michael Kühl, Lubos Polerecky

31 Citationer (Scopus)

Abstract

Based on combined microsensor measurements of irradiance, temperature and O 2, we compared light energy budgets in photosynthetic microbial mats, with a special focus on the efficiency of light energy conservation by photosynthesis. The euphotic zones in the three studied mats differed in their phototrophic community structure, pigment concentrations and thickness. In all mats, <1% of the absorbed light energy was conserved via photosynthesis at high incident irradiance, while the rest was dissipated as heat. Under light-limiting conditions, the photosynthetic efficiency reached a maximum, which varied among the studied mats between 4.5% and 16.2% and was significantly lower than the theoretical maximum of 27.7%. The maximum efficiency correlated linearly with the light attenuation coefficient and photopigment concentration in the euphotic zone. Higher photosynthetic efficiency was found in mats with a thinner and more densely populated euphotic zone. Microbial mats exhibit a lower photosynthetic efficiency compared with ecosystems with a more open canopy-like organization of photosynthetic elements, where light propagation is not hindered to the same extent by photosynthetically inactive components; such components contributed about 40-80% to light absorption in the investigated microbial mats, which is in a similar range as in oceanic planktonic systems.

OriginalsprogEngelsk
TidsskriftEnvironmental Microbiology
Vol/bind14
Udgave nummer4
Sider (fra-til)982-992
Antal sider11
ISSN1462-2912
DOI
StatusUdgivet - apr. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Light utilization efficiency in photosynthetic microbial mats'. Sammen danner de et unikt fingeraftryk.

Citationsformater