Light-driven cytochrome P450 hydroxylations

    56 Citationer (Scopus)

    Abstract

    Plants are light-driven "green" factories able to synthesize more than 200,000 different bioactive natural products, many of which are high-value products used as drugs (e.g., artemisinin, taxol, and thapsigargin). In the formation of natural products, cytochrome P450 (P450) monooxygenases play a key role in catalyzing regio- and stereospecific hydroxylations that are often difficult to achieve using the approaches of chemical synthesis. P450-catalyzed monooxygenations are dependent on electron donation typically from NADPH catalyzed by NADPH-cytochrome P450 oxidoreductase (CPR). The consumption of the costly cofactor NADPH constitutes an economical obstacle for biotechnological in vitro applications of P450s. This bottleneck has been overcome by the design of an in vitro system able to carry out light-driven P450 hydroxylations using photosystem I (PSI) for light harvesting and generation of reducing equivalents necessary to drive the P450 catalytic cycle. The in vitro system is based on the use of isolated PSI and P450 membrane complexes using ferredoxin as an electron carrier. The turnover rate of the P450 in the light-driven system was 413 min(-1) compared to 228 min(-1) in the native CPR-catalyzed system. The use of light as a substitute for costly NADPH offers a new avenue for P450-mediated synthesis of complex bioactive natural products using in vitro synthetic biology approaches.
    OriginalsprogEngelsk
    TidsskriftA C S Chemical Biology
    Vol/bind6
    Udgave nummer6
    Sider (fra-til)533-539
    Antal sider7
    ISSN1554-8929
    DOI
    StatusUdgivet - 17 jun. 2011

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Light-driven cytochrome P450 hydroxylations'. Sammen danner de et unikt fingeraftryk.

    Citationsformater