Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2: IDENTIFICATION OF A POTENT AND EFFICACIOUS INVERSE AGONIST

Tau Benned-Jensen, Christopher Smethurst, Peter Johannes Holst, Kevin R. Page, Howard Sauls, Bjørn Behrens Sivertsen, Thue W. Schwartz, Andy Blanchard, Robert Jepras, Mette Marie Rosenkilde

25 Citationer (Scopus)

Abstract

The Epstein-Barr virus-induced receptor 2 (EBI2) is a constitutively active seven-transmembrane receptor, which was recently shown to orchestrate the positioning of B cells in the follicle. To date, no ligands, endogenously or synthetic, have been identified that modulate EBI2 activity. Here we describe an inverse agonist, GSK682753A, which selectively inhibited the constitutive activity of EBI2 with high potency and efficacy. In cAMP-response element-binding protein-based reporter and guanosine 5′-3-O-(thio)triphosphate (GTPγS) binding assays, the potency of this compound was 2.6–53.6 nM, and its inhibitory efficacy was 75%. In addition, we show that EBI2 constitutively activated extracellular signal-regulated kinase (ERK) in a pertussis toxin-insensitive manner. Intriguingly, GSK682753A inhibited ERK phosphorylation, GTPγS binding, and cAMP-response element-binding protein activation with similar potency. Overexpression of EBI2 profoundly potentiated antibody-stimulated ex vivo proliferation of murine B cells compared with WT cells, whereas this was equivalently reduced for EBI2-deficient B cells. Inhibition of EBI2 constitutive activity suppressed the proliferation in all cases. Importantly, the suppression was of much higher potency (32-fold) in WT or EBI2-overexpressing B cells compared with EBI2-deficient counterparts. Finally, we screened GSK682753A against an EBI2 mutant library to determine putative molecular binding determinants in EBI2. We identified Phe111 at position III:08/3.32 as being crucial for GSK682753A inverse agonism because Ala substitution resulted in a >500-fold decrease in IC50. In conclusion, we present the first ligand targeting EBI2. In turn, this molecule provides a useful tool for further characterization of EBI2 as well as serving as a potent lead compound.
OriginalsprogEngelsk
TidsskriftJournal of Biological Chemistry
Vol/bind286
Sider (fra-til)29292-29302
Antal sider11
ISSN0021-9258
DOI
StatusUdgivet - 19 aug. 2011

Fingeraftryk

Dyk ned i forskningsemnerne om 'Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2: IDENTIFICATION OF A POTENT AND EFFICACIOUS INVERSE AGONIST'. Sammen danner de et unikt fingeraftryk.

Citationsformater