Abstract
A classical theorem of G. Köthe states that the Banach spaces X with the property that all bounded linear maps X → Y into an arbitrary Banach space Y can be lifted with respect to bounded linear surjections onto Y are up to topological linear isomorphism precisely the spaces ℓ1(A). We extend this result to the category of normed linear spaces and bounded linear maps. This answers a question raised by A. Ya. Helemskiĭ.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Annals of Functional Analysis |
Vol/bind | 7 |
Udgave nummer | 1 |
Sider (fra-til) | 118-126. |
ISSN | 2008-8752 |
DOI | |
Status | Udgivet - 2016 |