Learning when to point: A data-driven approach

Albert Gatt, Patrizia Paggio

5 Citationer (Scopus)

Abstract

The relationship between how people describe objects and when they choose to point is complex and likely to be influenced by factors related to both perceptual and discourse context. In this paper, we explore these interactions using machine-learning on a dialogue corpus, to identify multimodal referential strategies that can be used in automatic multimodal generation. We show that the decision to use a pointing gesture depends on features of the accompanying description (especially whether it contains spatial information), and on visual properties, especially distance or separation of a referent from its previous referent.

OriginalsprogEngelsk
TitelProceedings of the 25th International Conference on Computational Linguistics (COLING '14)
Antal sider10
UdgivelsesstedDublin, Ireland
ForlagAssociation for Computational Linguistics
Publikationsdato2014
Sider2007-2017
StatusUdgivet - 2014
BegivenhedColing 2014 - Dublin, Irland
Varighed: 23 aug. 201429 aug. 2014

Konference

KonferenceColing 2014
Land/OmrådeIrland
ByDublin
Periode23/08/201429/08/2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Learning when to point: A data-driven approach'. Sammen danner de et unikt fingeraftryk.

Citationsformater