Large deviation tail estimates and related limit laws for stochastic fixed point equations

Jeffrey F. Collamore, Anand N. Vidyashankar

4 Citationer (Scopus)
969 Downloads (Pure)

Abstract

We study the forward and backward recursions generated by a stochastic fixed point equation (SFPE) of the form (Formula presented.), where (A, B, D) ∈ (o, ∞) x ℝ2, for both the stationary and explosive cases. In the stationary case (when E[log A] < 0), we present results concerning the precise tail asymptotics for the random variable V satisfying this SFPE. In the explosive case (when E[log A] > 0), we establish a central limit theorem for the forward recursion generated by the SFPE, namely the process Vn = An max{Vn-1, Dn} + Bn, where {(An, Bn, Dn) : n ∈ ℤ+} is an i.i.d. sequence of random variables. Next, we consider recursions where the driving sequence of vectors, {.An, Bn, Dn) : n ∈ ℤ+}, is modulated by a Markov chain in general state space. We demonstrate an asymmetry between the forward and backward recursions and develop techniques for estimating the exceedance probability. In the process, we establish an interesting connection between the regularity properties of {Vn} and the recurrence properties of an associated ξ-shifted Markov chain. We illustrate these ideas with several examples.

OriginalsprogEngelsk
TitelRandom Matrices and Iterated Random Functions
RedaktørerMatthias Lowe, Gerold Alsmeyer
Antal sider27
Vol/bind63
UdgivelsesstedHeidelberg
ForlagSpringer
Publikationsdato2013
Sider91-117
ISBN (Trykt)978-3-642-38805-7
StatusUdgivet - 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Large deviation tail estimates and related limit laws for stochastic fixed point equations'. Sammen danner de et unikt fingeraftryk.

Citationsformater