Abstract
In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, and subsequently enhanced the cytotoxic and apoptotic effects of TRAIL on HepG2 cells. Interestingly, SIRT1 interacted directly with c-FLIP(L) and Ku70, and treatment with SIRT1 inhibitor enhanced acetylation of Ku70 and subsequently decreased its binding to c-FLIP. And this was followed by degradation of c-FLIP. Moreover, Ku70(-/-) MEF and Ku70-knockdown HepG2 cells showed the increased levels of c-Myc, ATF4, CHOP, and DR5 and decreased level of c-FLIP. These results were followed by increased sensitivity of Ku70(-/-) MEF cells and Ku70-knockdown HepG2 cells to TRAIL compared with their control cells. These findings reveal for the first time that SIRT1 inhibition increases Ku70 acetylation, and the acetylated Ku70 with a decreased function mediates the induction of DR5 and the down-regulation of c-FLIP by up-regulating c-Myc/ATF4/CHOP pathway, and consequently promotes the TRAIL-induced apoptosis of HepG2 cells. This study provides important mechanistic insight of the synergism exhibited by SIRT1 inhibition and TRAIL.
Originalsprog | Engelsk |
---|---|
Tidsskrift | International Journal of Biochemistry & Cell Biology |
Vol/bind | 45 |
Udgave nummer | 3 |
Sider (fra-til) | 711-23 |
Antal sider | 13 |
ISSN | 1357-2725 |
DOI | |
Status | Udgivet - mar. 2013 |