KK -theory and spectral flow in von Neumann algebras

Jens Kaad, Ryszard Nest, Adam Rennie

13 Citationer (Scopus)

Abstract

We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko (J).
Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable, we construct a class [D] ¿ KK1 (A, K(N)). For a unitary u ¿ A, the von Neumann spectral flow between D and u*Du is equal to the Kasparov product [u] A[D], and is simply related to the numerical spectral flow, and a refined C* -spectral flow.
OriginalsprogEngelsk
TidsskriftJournal of K-Theory
Vol/bind10
Udgave nummer2
Sider (fra-til)241-277
ISSN1865-2433
DOI
StatusUdgivet - okt. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'KK -theory and spectral flow in von Neumann algebras'. Sammen danner de et unikt fingeraftryk.

Citationsformater