Abstract
BACKGROUND: Atrial fibrillation (AF) is the most common cardiac rhythm disorder with a lifetime risk for development of 25% for people aged 40 or older. In this study we aim for the functional assessment of a mutation in KCNE3 identified in a proband with early-onset lone AF. METHODS: Screening of genomic DNA from the proband led to identification of a KCNE3 V17M missense mutation. We heterologously expressed the accessory channel subunit in Xenopus laevis oocytes together with its known interacting potassium channel alpha-subunits. Further, we applied RT-PCR on human total RNA from left and right atria and ventricle. RESULTS: Electrophysiological recordings revealed an increased activity of Kv4.3/KCNE3 and Kv11.1/KCNE3 generated currents by the mutation, thereby conferring susceptibility of mutation carriers to faster cardiac action potential repolarization and thus vulnerability to re-entrant wavelets in the atria and thereby AF. CONCLUSION: Here we report a novel mutation in KCNE3 identified in a proband with early-onset lone AF possibly leading to gain-of-function of several cardiac currents. We suggest abnormalities in the KCNE3 gene as a potential genetic risk factor for initiation and/or maintenance of AF.
Udgivelsesdato: 2008-null
Udgivelsesdato: 2008-null
Originalsprog | Engelsk |
---|---|
Tidsskrift | Cellular Physiology and Biochemistry |
Vol/bind | 21 |
Udgave nummer | 1-3 |
Sider (fra-til) | 47-54 |
Antal sider | 7 |
ISSN | 1015-8987 |
DOI | |
Status | Udgivet - 2008 |