TY - JOUR
T1 - Interspecies interactions reduce selection for a biofilm-optimized variant in a four-species biofilm model
AU - Røder, Henriette Lyng
AU - Liu, Wenzheng
AU - Sørensen, Søren Johannes
AU - Madsen, Jonas Stenløkke
AU - Burmølle, Mette
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Multispecies biofilms are structured and spatially defined communities, where interspecies interactions impact assembly and functionality. Here, we compared the spatial organization and growth of bacterial cells in differently composed biofilm communities over time to determine links between interspecies interactions and selection for biofilm phenotypes of individual species. An established model community consisting of Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus was used. It was found that interspecies interactions led to varying levels of selection for a new colony phenotype of X. retroflexus, depending on the presence/absence of other species. When M. oxydans was absent, X. retroflexus was not able to establish in the top layers of the biofilm, which led to selection for a hyper-matrix forming phenotype of X. retroflexus that successfully established in the biofilm top layers. No such phenotypic X. retroflexus variants were identified in the presence of M. oxydans. These findings indicate that interspecies interactions may lead to favourable localization of individual species in a multispecies biofilm and thereby reduce selection for competitive phenotypes.
AB - Multispecies biofilms are structured and spatially defined communities, where interspecies interactions impact assembly and functionality. Here, we compared the spatial organization and growth of bacterial cells in differently composed biofilm communities over time to determine links between interspecies interactions and selection for biofilm phenotypes of individual species. An established model community consisting of Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus was used. It was found that interspecies interactions led to varying levels of selection for a new colony phenotype of X. retroflexus, depending on the presence/absence of other species. When M. oxydans was absent, X. retroflexus was not able to establish in the top layers of the biofilm, which led to selection for a hyper-matrix forming phenotype of X. retroflexus that successfully established in the biofilm top layers. No such phenotypic X. retroflexus variants were identified in the presence of M. oxydans. These findings indicate that interspecies interactions may lead to favourable localization of individual species in a multispecies biofilm and thereby reduce selection for competitive phenotypes.
U2 - 10.1111/1758-2229.12803
DO - 10.1111/1758-2229.12803
M3 - Journal article
C2 - 31680421
SN - 1758-2229
VL - 11
SP - 835
EP - 839
JO - Environmental Microbiology Reports
JF - Environmental Microbiology Reports
IS - 6
ER -