TY - JOUR
T1 - Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants
AU - Albert, Kristian Rost
AU - Mikkelsen, Teis Nørgaard
AU - Michelsen, Anders
AU - Ro-Poulsen, Helge
AU - van der Linden, Leon
N1 - Copyright © 2011 Elsevier GmbH. All rights reserved.
PY - 2011/9/1
Y1 - 2011/9/1
N2 - Increased temperature, atmospheric CO(2) and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO(2) (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem. Photosynthetic capacity was evaluated using A/C(i) curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PI(total), which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test. The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO(2) and prolonged drought generally down-regulated J(max), V(cmax) and PI(total). Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass. Warming effects acted indirectly to improve early season J(max), V(cmax) and PI(total). The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T×CO2, D×CO2 and T×D×CO2 on photosynthetic capacity and PSII performance. The impact on the O-J, J-I and I-P phases which determine the response of PI(total) are discussed. The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of V(cmax), J(max) and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions. This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.
AB - Increased temperature, atmospheric CO(2) and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO(2) (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem. Photosynthetic capacity was evaluated using A/C(i) curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PI(total), which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test. The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO(2) and prolonged drought generally down-regulated J(max), V(cmax) and PI(total). Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass. Warming effects acted indirectly to improve early season J(max), V(cmax) and PI(total). The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T×CO2, D×CO2 and T×D×CO2 on photosynthetic capacity and PSII performance. The impact on the O-J, J-I and I-P phases which determine the response of PI(total) are discussed. The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of V(cmax), J(max) and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions. This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.
U2 - 10.1016/j.jplph.2011.02.011
DO - 10.1016/j.jplph.2011.02.011
M3 - Journal article
C2 - 21511363
SN - 0176-1617
VL - 168
SP - 1550
EP - 1561
JO - Journal of Plant Physiology
JF - Journal of Plant Physiology
IS - 13
ER -