Incremental exact min-cut in poly-logarithmic amortized update time

Gramoz Goranci, Monika Henzinger, Mikkel Thorup

3 Citationer (Scopus)
57 Downloads (Pure)

Abstract

We present a deterministic incremental algorithm for exactly maintaining the size of a minimum cut with O(1) amortized time per edge insertion and O(1) query time. This result partially answers an open question posed by Thorup [Combinatorica 2007]. It also stays in sharp contrast to a polynomial conditional lower-bound for the fully-dynamic weighted minimum cut problem. Our algorithm is obtained by combining a recent sparsification technique of Kawarabayashi and Thorup [STOC 2015] and an exact incremental algorithm of Henzinger [J. of Algorithm 1997]. We also study space-efficient incremental algorithms for the minimum cut problem. Concretely, we show that there exists an O(n log n/ϵ2) space Monte-Carlo algorithm that can process a stream of edge insertions starting from an empty graph, and with high probability, the algorithm maintains a (1 + ϵ)-approximation to the minimum cut. The algorithm has Õ(1) amortized update-time and constant query-time.

OriginalsprogEngelsk
Titel24th Annual European Symposium on Algorithms (ESA 2016)
RedaktørerPiotr Sankowski, Christos Zaroliagis
Antal sider17
ForlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Publikationsdato1 aug. 2016
Artikelnummer46
ISBN (Trykt)978-3-95977-015-6
DOI
StatusUdgivet - 1 aug. 2016
Begivenhed24th Annual European Symposium on Algorithms - Århus, Danmark
Varighed: 22 aug. 201626 aug. 2016
Konferencens nummer: 24

Konference

Konference24th Annual European Symposium on Algorithms
Nummer24
Land/OmrådeDanmark
ByÅrhus
Periode22/08/201626/08/2016
NavnLeibniz International Proceedings in Informatics
Vol/bind57
ISSN1868-8969

Fingeraftryk

Dyk ned i forskningsemnerne om 'Incremental exact min-cut in poly-logarithmic amortized update time'. Sammen danner de et unikt fingeraftryk.

Citationsformater