TY - JOUR
T1 - Increased technetium-99 m hydroxy diphosphonate soft tissue uptake on bone scintigraphy in chronic kidney disease patients with secondary hyperparathyroidism
T2 - correlation with hyperphosphataemia
AU - Enevoldsen, Lotte Hahn
AU - Heaf, James Goya
AU - Højgaard, Liselotte
AU - Zerahn, Bo
AU - Hasbak, Philip
N1 - © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and/or hyperphosphataemia. As human vascular smooth muscle cells produce hydroxyapatite during cell culture with increased phosphate levels and as Tc-99 m-HDP/MDP primarily binds to hydroxyapatite, we hypothesized that soft tissue accumulation would be found in patients with hyperphosphataemia. We identified 63 CKD patients diagnosed with secondary hyperparathyroidism admitted for Tc-99 m-HDP bone scan. Baseline characteristics and mean concentrations of biochemical markers (including P-calcium and P-phosphate) taken 0-3 months prior to the bone scans were collected. Soft tissue uptake was detected on bone scans in 37 of 63 (59%) patients. Primary locations were in the heart (27/37 = 73%), muscles (12/37 = 32%), lung (9/37 = 24%) and gastrointestinal tract (6/37 = 16%), and 13 of 37 (35%) patients had simultaneous uptake in more than one location. Regarding biochemical markers, patients with soft tissue uptake only differed from patients without in terms of plasma phosphate levels (1·95 ± 0·15 (n = 37) versus 1·27 ± 0·08 (n = 26), P = 0·0012). All patients with myocardial uptake (n = 27) had a coronary arteriography-verified history of coronary artery disease (CAD), whereas CAD was only present in six of the 36 patients without myocardial uptake. In conclusion, dialysis-treated CKD patients with secondary hyperparathyroidism have a high incidence of soft tissue uptake, and this finding is strongly correlated with elevated phosphate, but not calcium values.
AB - In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and/or hyperphosphataemia. As human vascular smooth muscle cells produce hydroxyapatite during cell culture with increased phosphate levels and as Tc-99 m-HDP/MDP primarily binds to hydroxyapatite, we hypothesized that soft tissue accumulation would be found in patients with hyperphosphataemia. We identified 63 CKD patients diagnosed with secondary hyperparathyroidism admitted for Tc-99 m-HDP bone scan. Baseline characteristics and mean concentrations of biochemical markers (including P-calcium and P-phosphate) taken 0-3 months prior to the bone scans were collected. Soft tissue uptake was detected on bone scans in 37 of 63 (59%) patients. Primary locations were in the heart (27/37 = 73%), muscles (12/37 = 32%), lung (9/37 = 24%) and gastrointestinal tract (6/37 = 16%), and 13 of 37 (35%) patients had simultaneous uptake in more than one location. Regarding biochemical markers, patients with soft tissue uptake only differed from patients without in terms of plasma phosphate levels (1·95 ± 0·15 (n = 37) versus 1·27 ± 0·08 (n = 26), P = 0·0012). All patients with myocardial uptake (n = 27) had a coronary arteriography-verified history of coronary artery disease (CAD), whereas CAD was only present in six of the 36 patients without myocardial uptake. In conclusion, dialysis-treated CKD patients with secondary hyperparathyroidism have a high incidence of soft tissue uptake, and this finding is strongly correlated with elevated phosphate, but not calcium values.
U2 - 10.1111/cpf.12276
DO - 10.1111/cpf.12276
M3 - Journal article
C2 - 26148143
SN - 1475-0961
VL - 37
SP - 131
EP - 136
JO - Clinical Physiology and Functional Imaging
JF - Clinical Physiology and Functional Imaging
IS - 2
ER -