TY - JOUR
T1 - In situ net N mineralisation and nitrification under organic and conventionally managed olive oil orchards
AU - Gomez Muñoz, Beatriz
AU - Hinojosa, M. B.
AU - García-Ruiz, R.
PY - 2015/3
Y1 - 2015/3
N2 - Olive oil orchard occupies a great percentage of the cropland in southern Spain. Thus, changes in nitrogen (N) fertilization might have a great effect on N dynamics at least at regional scale, which should be investigated for a sustainable N fertilization program. In situ net N mineralization (NM) and nitrification (NN) were investigated during a year in comparable organic (OR) and conventional (CV) olive oil orchards of two locations differing their N input. Soil samples were collected in two soil positions (under and between trees canopy) and both buried-bags and soil core techniques were used to quantify both microbial rates. There were differences in NM and NN between sites mainly due to differences in soil total N (TN), and potential mineralisable N (PMN). In all cases NM and NN were higher in soils under tree canopy. NM and NN were higher in OR than in CV managed orchards in the location with high soil TN. Soil TN and PMN explained together a 50 % of the variability in soil N availability, which suggests that these two variables are good predictors of the potential of a soil to provide available N. The highest rates of soil N availability were found in spring, when olive tree demand for N was at its maximum. Annual soil N availability in olive groves was in all cases higher or similar than tree demand suggesting that soil annual supply of N should be taken into account in order to develop sustainable N fertilisation strategies for olive crops.
AB - Olive oil orchard occupies a great percentage of the cropland in southern Spain. Thus, changes in nitrogen (N) fertilization might have a great effect on N dynamics at least at regional scale, which should be investigated for a sustainable N fertilization program. In situ net N mineralization (NM) and nitrification (NN) were investigated during a year in comparable organic (OR) and conventional (CV) olive oil orchards of two locations differing their N input. Soil samples were collected in two soil positions (under and between trees canopy) and both buried-bags and soil core techniques were used to quantify both microbial rates. There were differences in NM and NN between sites mainly due to differences in soil total N (TN), and potential mineralisable N (PMN). In all cases NM and NN were higher in soils under tree canopy. NM and NN were higher in OR than in CV managed orchards in the location with high soil TN. Soil TN and PMN explained together a 50 % of the variability in soil N availability, which suggests that these two variables are good predictors of the potential of a soil to provide available N. The highest rates of soil N availability were found in spring, when olive tree demand for N was at its maximum. Annual soil N availability in olive groves was in all cases higher or similar than tree demand suggesting that soil annual supply of N should be taken into account in order to develop sustainable N fertilisation strategies for olive crops.
KW - Fertilisation
KW - N dynamic
KW - Organic and conventional olive crop
KW - Soil N mineralization
U2 - 10.1007/s10705-015-9672-y
DO - 10.1007/s10705-015-9672-y
M3 - Journal article
AN - SCOPUS:84925487162
SN - 1385-1314
VL - 101
SP - 223
EP - 239
JO - Nutrient Cycling in Agroecosystems
JF - Nutrient Cycling in Agroecosystems
IS - 2
ER -