TY - JOUR
T1 - Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells
AU - Valembois, Sophie Annick N
AU - Krall, Jacob
AU - Frølund, Bente
AU - Steffansen, Bente
PY - 2017/5/30
Y1 - 2017/5/30
N2 - Retinal diseases leading to impaired vision and ultimately blindness are mainly characterized by ischemic and hypoxic stress. Targeting the retinal ρ-containing γ-aminobutyric acid type A receptors (ρ GABAARs) and thereby decreasing the retinal neuronal activity has been proposed as a novel therapeutic approach. The taurine transporter (TAUT) plays a key role in the retinal transport of GABA and has been previously suggested to display a higher functional activity in the retina compared to the brain. TAUT would therefore stand as a suitable target for the selective delivery of ρ GABAAR ligands into the retina. Consequently, an in vitro model of TAUT at the outer blood-retinal barrier (BRB) was developed and characterized using the ARPE-19 cell line. Furthermore, the structural requirements of GABAAR ligands for interacting with TAUT at the BRB were investigated for a series of standard GABAAR ligands by testing their ability to inhibit the TAUT-mediated influx of taurine in ARPE-19 cells. Results showed that taurine influx was seven-fold higher when the ARPE-19 cells were cultured under hyperosmotic conditions and was demonstrated to display saturable kinetics (Km = 27.7 ± 2.2 μM and Jmax = 24.2 ± 0.6 pmol/cm2·min). Furthermore, the taurine influx was significantly inhibited in a concentration-dependent manner by GABA and imidazole-4-acetic acid (IAA), which is a naturally occurring metabolite of histamine. These compounds display similar Ki values of 644.2 μM and 658.6 μM, respectively. Moreover, IAA demonstrated higher inhibitory properties than the other tested GABA analogs: 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), 4,5,6,7-tetrahydropyrazolo[5,4-c]pyridin-3-ol (Aza-THIP), muscimol, and thiomuscimol. These studies demonstrated that IAA interacts with TAUT, which makes IAA a new lead structure in the development of new compounds, which are not only interacting with TAUT but also potent ρ GABAAR ligands.
AB - Retinal diseases leading to impaired vision and ultimately blindness are mainly characterized by ischemic and hypoxic stress. Targeting the retinal ρ-containing γ-aminobutyric acid type A receptors (ρ GABAARs) and thereby decreasing the retinal neuronal activity has been proposed as a novel therapeutic approach. The taurine transporter (TAUT) plays a key role in the retinal transport of GABA and has been previously suggested to display a higher functional activity in the retina compared to the brain. TAUT would therefore stand as a suitable target for the selective delivery of ρ GABAAR ligands into the retina. Consequently, an in vitro model of TAUT at the outer blood-retinal barrier (BRB) was developed and characterized using the ARPE-19 cell line. Furthermore, the structural requirements of GABAAR ligands for interacting with TAUT at the BRB were investigated for a series of standard GABAAR ligands by testing their ability to inhibit the TAUT-mediated influx of taurine in ARPE-19 cells. Results showed that taurine influx was seven-fold higher when the ARPE-19 cells were cultured under hyperosmotic conditions and was demonstrated to display saturable kinetics (Km = 27.7 ± 2.2 μM and Jmax = 24.2 ± 0.6 pmol/cm2·min). Furthermore, the taurine influx was significantly inhibited in a concentration-dependent manner by GABA and imidazole-4-acetic acid (IAA), which is a naturally occurring metabolite of histamine. These compounds display similar Ki values of 644.2 μM and 658.6 μM, respectively. Moreover, IAA demonstrated higher inhibitory properties than the other tested GABA analogs: 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), 4,5,6,7-tetrahydropyrazolo[5,4-c]pyridin-3-ol (Aza-THIP), muscimol, and thiomuscimol. These studies demonstrated that IAA interacts with TAUT, which makes IAA a new lead structure in the development of new compounds, which are not only interacting with TAUT but also potent ρ GABAAR ligands.
U2 - 10.1016/j.ejps.2017.02.041
DO - 10.1016/j.ejps.2017.02.041
M3 - Journal article
C2 - 28259832
SN - 0928-0987
VL - 103
SP - 77
EP - 84
JO - Norvegica Pharmaceutica Acta
JF - Norvegica Pharmaceutica Acta
ER -