Identifying parameter regions for multistationarity

Carsten Conradi, Elisenda Feliu, Maya Mincheva, Carsten Wiuf

32 Citationer (Scopus)
113 Downloads (Pure)

Abstract

Mathematical modeling has become an established tool for studying biological dynamics. Current applications range from building models that reproduce quantitative data to identifying models with predefined qualitative features, such as switching behavior, bistability or oscillations. Mathematically, the latter question amounts to identifying parameter values associated with a given qualitative feature. We introduce an algorithm to partition the parameter space of a parameterized system of ordinary differential equations into regions for which the system has a unique or multiple equilibria. The algorithm is based on a simple idea, the computation of the Brouwer degree, and creates a multivariate polynomial with parameter depending coefficients. Using algebraic techniques, the signs of the coefficients reveal parameter regions with and without multistationarity. We demonstrate the algorithm on models of gene transcription and cell signaling, and argue that the parameter constraints defining each region have biological meaningful interpretations.
OriginalsprogEngelsk
Artikelnummere1005751.
TidsskriftP L o S Computational Biology (Online)
Vol/bind13
Udgave nummer10
Antal sider25
ISSN1553-7358
DOI
StatusUdgivet - okt. 2017

Emneord

  • q-bio.MN
  • math.AG
  • math.DS

Fingeraftryk

Dyk ned i forskningsemnerne om 'Identifying parameter regions for multistationarity'. Sammen danner de et unikt fingeraftryk.

Citationsformater