Abstract
Let SG* be the Brown poset of nonidentity p-subgroups of the finite group G ordered by inclusion. Results of Bouc and Quillen show that SG* is homotopy equivalent to its subposets SG*+rad of nonidentity radical p-subgroups and SG*+eab of nonidentity elementary abelian p-subgroups. In this note we extend these results for the Brown poset of G to other categories of p-subgroups of G, including the p-fusion system of G.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Pure and Applied Algebra |
Vol/bind | 219 |
Udgave nummer | 7 |
Sider (fra-til) | 3030–3052 |
ISSN | 0022-4049 |
DOI | |
Status | Udgivet - 1 jul. 2015 |